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Simplified sketch of SIM’s internal metrology light path (red line) and starlight (blue).
Internal metrology measures the difference in starlight path (adjusted by the delay lines)
required to keep the central startlight fringe locked at the fringe detector. The baseline

vector D is the vector from the center of siderostat 1 to siderostat 2.
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Cut-away view of SIM’s optical support structure containing siderostats, optical delay
lines and startlight beam combiners. The external metrology beams or “struts” will be
used to monitor the geometry of SIM to ~100 pm. Geometry means the precise lengths,
relative directions and positions of the baseline vectors of the three interferometers (one
for science and two for reference stars). (The two extra siderostats are backups.)



Internal metrology
requirement

External metrology
requirement

Number of gauges

8

42 (kite: 6, roll estimation:
4, siderostats: 32)

Number of gauges for
mission success
(assuming dispersed
failures)

6 (two siderostats are
spares)

24 (Kite: 5, roll
estimation: 1, siderostat
fiducials: 24)

Distance between
fiducials

20 meters

Varies: shortest are 4
meters, longest are 12
meters.

Motion; ranges of
distances

2.6 meters while changing
stars; 10 microns while
observing

10 microns

Velocity

2 cm/s while changing stars, 1 micron/sec while

observing

Accuracy (absolute)

Solved for with astrometric
data

3 microns rms

Accuracy relative

15 pm rms (1 hour time scale); 8 pm rms (5 minute s)

Temperature
coefficient

2 pm/mK (soak); 50 pm/mK (sensitivity to gradients)

Table 1: SIM metrology requirements, subject to change as SIM’s design evolves.

Wavelength

1.3 microns

Distance between
fiducials

2.5 meters

Beam diameter

5 mm, measured to 1/¢* intensity.

Accuracy (absolute)

Not yet measured

Accuracy (relative)

eITor Sources)

~100 pm (Dominated by polarization leakage.
Ignores mispointing, diffraction and thermal

Temperature coefficient

~100 pm/mK (See text)

Table 2: current performance of metrology prototypes
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Block diagram of metrology system under development. The FM
modulator linearly sweeps the optical frequency 84 MHz in a triangle
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pattern for cyclic averaging. The frequency shifters are fed by RF signals
100 kHz apart to create the 100 KHz heterodyne which will be detected by
the photodiodes (attached to the beamlauncher).
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(B) Alternative “racetrack light path.



Goal Achieved
Dihedral error <2 arc-seconds (as) ~2 as
Planarity of faces <A/100 peak/valley (633 | <A/30 p/v (633
nm) nm)
Vertex-to-siderostat surface <1 micron 0.8 micron
distance.
Vertex-to-siderostat distance 2 nm ~150 nm

calibration

Table 3: performance of siderostat fiducials, expressed as surface errors.

Goal Achieved
Dihedral error <A/20 p/v (633 nm) 1as

(<1 as)
Planarity of faces <A/20 p/v (633 nm) <A/20 p/v (633

nm)

Co-location of corner-cube <10 microns 2 microns
vertices
Vertex co-location calibration 200 nm Not measured

Table 4: performance of external metrology fiducials (triple corner-cubes).
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Figure 6: Analog front-end used to convert heterodyne signal to square wave.

No. of channels: | 6 (supports 3 metrology gauges.)

Input --> output 100 kHz sine, +/- 10 V ES --> differential TTL

Drift: 1.8 ufringe (1.2 pm) in 6 hours at 100 kHz

Noise: 35 ufringe at 5V into zero-crossing detector. 0.1 pfringe, at 1 sec
integration time

AM. rejection: 1 ufringe (0.65 pm) for 10% amplitude change (balanced common
mode). 4 ufringe (2.6 pm) for 10% amplitude change (unbalanced).

Crosstalk: <0.02 % amplitude artifact observed on one channel, with 5 other
channels driven in tandem. (2 pm)

Table 5: Performance of 100 kHz post-amp electronics.







Number of channels 6

Maximum clock 128 MHz.

frequency

Stability 10 cycles (6.5 pm) for ambient temperature held
to 0.1 C.

Range 2% =4.3x10° cycles. (2795 meters)

Het. frequency range

1954 Hz to 1.33 MHz

Phase resolution (no
averaging)

1.6x10 cycles (10 pm) at 2 kHz to 0.01 cycles
(650 pm) at 1.3 MHz heterodyne frequency.
(Improves with averaging)

Velocity range at
maximum heterodyne
frequency

+/- 0.88x10° cycles per second (0.58
meters/second)

Temperature sensitivity

<500 picoseconds/C (32 pm/C)

Table 6. Specifications for the JPL phasemeter. Specifications in
picometers assume a 100 kHz heterodyne frequency and 1.3 micron

wavelength.
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Figure 7: Schematic of polarization leakage problem.
A small amount of S polarized light "leaks" through
the polarizing beam splitter (diagonal line) and
interferes with the S light that makes the round trip
between corner cube fiducials.
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*Two gauges measuring between common corner cubes
* One race track, one vertex-to-vertex
 Consider one gauge as truth, measure second gauge's

performance against it
» Use of two gauges gives good common mode rejection.
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Beamlauncher (in thermal shield) JPL
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Sample Data (om2000 06 29_18_baseline/a)
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«Corner cube moved linearly 57.2 microns in 20 seconds
*Two gauges agree closely. Next slide will look closer...
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Same data, but detrended and rescaled
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Slow, common-mode deviations from Fast oscillating deviations are caused by
linear sweep are caused by corner cube polarization leakage: the infamous cyclic error.
piezo non-linearity (not a problem. Error magnitude: 14.5 nm RMS in difference.
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Cyclic averaging: a means to suppress cyclic error
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Error is periodic => Can average it out by dithering the gauge
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Implementing cyclic averaging JPL

» Gauge phase dithered by modulating laser frequency at some
“reasonably high” frequency, e.g. 100 Hz

« Need full cycle of phase on shortest length 1.e.

AL C
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Af

e Shortest baseline on SIM and in tech program was 2m (now 4 m for
SIM) => Af =75 MHz

e Currently achieved by double passing through AOFM (actually applies
Af = 84 MHz)
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s apply this method to the data at hand:

Apply triangle laser frequency dither: Dither rate= 25 Hz
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Cyclic averaging pattern applied to data

JPLU

25 Hz FM dither pattern applied by AOFM

Actual averaging window
time chosen to bracket exactly 1
period of the cyclic error

>

< 15.125 ms <4— F+84 MHz

Space Interferometry Mission

Frequency (or 1/wavelength)

(F=base laser frequency=c/A=227 THz)
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Turn on frequency dither & cyclic averaging and take new data 200_0_29_18_basliner SPL
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Lets take a closer look...
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Difference data, zoomed
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Same setup, as previous data, but rescaled

Cyclic averaging reduced cyclic error from 14.5 nm down
to 50 pm RMS (in the difference).

Suppression factor=14,500 pm / 50 pm = 290
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Figure 10: Layout of absolute calibration stand.
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Figure 9: Laser source upgrade for absolute metrology. Light from lasers A
and B are held 15 GHz apart by the laser offset locking electronics. A
clock signal (in practice, the phasemeter readout clock) toggles intensity
modulators A and B. The resulting 500 Hz rate, 15 GHz amplitude FM is
fed to the metrology gauge for absolute calibration, as described in the text.
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Figure 9: Laser source upgrade for absolute metrology.
Light from lasers A and B are held 15 GHz apart by the
laser offset locking electronics. A clock signal (in practice,
the phasemeter readout clock) toggles intensity modulators
A and B. The resulting 500 Hz rate, 15 GHz amplitude FM
is fed to the metrology gauge for absolute calibration, as
described in the text.
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Absolute metrology calibration stand.
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Figure 11: schematic of a disturbance moving a fiducial, requiring a
beamlauncher pointing angle change 6d to maintain alignment.
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Figure 12: phasemeter output (L) as a function of beamlauncher
elevation and azimuth angle. Each contour is 0.002 cycles or 1.3 nm.
The central region, near perfect alignment, has a maximum in L.
L=2m. Theta, phi: arbitrary units.
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Figure 13: schematic of beam launcher steering in two orthogonal

directions 6 and ¢, controlled by dual lock-in amplifiers.




— Data, Ios;a pass = 0.5 Hz'
— Fit, time constam = 20.2463 sec; Step =2.063
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Figure 14: Recovery from a d=110 micron displacement of a
corner cube fiducial. L=2 meters. Dither frequency = 50 Hz.
Data taken in air.



